H.M. SIGNAL SCHOOL. STAFF MINUTE SHEA subject:- The German Bernhard Navigational system -

 if 512 mats.

$$
\text { For } z_{0}-33.5 \mathrm{r} \text { do Range hitter. }
$$

ar is. After action-
No theation forsoitid frees. diagram in Fig.2. The overall diansions arc 106 ft . high x 132 ft . broad and the structure is based on a strong girder framework supported at four points by electric trollies running on a single circular rail, 65 fit. in diaractor, on which the whole structure rotates about its vertical axis in a clockwise direction (North, East, South and west) twice per minute.
3.2. Referring to the diagrain at Fig.2, it will bu soon that the cabin portion running across the fec of the rotating franc carries two 5 KW trensmitturs, each of which transmits a separate boon from a separate auriol array. The upper, threc-clement array is fid from transmitter "B" and transmits the \therefore ainuth writing bean and recognition letter, while the lower array provides the marker indication. Both transmissions are MCW, transmitter "A" being modulated at 2600 , and" $\mathrm{B}^{\prime \prime} 1800$ cycles per second. The AF modulation of $1800 \mathrm{c} \cdot \mathrm{p} . \mathrm{s}$. is applied to transmitter "B" via the device producing the teleprinter characteristics, the corrie wave being continuous. Transmitter "A" is continuously modulated and doperids for its function on the split bean pattern produced by the aurial array. sketch of the shape of the beans (superimposed on on c another) is given at Fig.3, and Fig. 4 shows a graph of the field strength plotted against bearing.

THE GERMAN BERNHIRD IITRCRIFT MAVIG. TIONAL SYSTEM.

1. INTRODUGTION.

The following report gives details of a German aircrai't navigational system which exploys large ground stations, of the rotating beacon tpe, transmitting a double bean to toleprinter recejving apparatus in the aircraft, where a printed tapc is produced that shows the bearing of the aircraft from the ground station. The original plan was to provide sufficient ground stations throughout Germany and tac occupicd countries to enable any aircraft flying in this refion to be ithin the range of at least one, and probably two, stations. Each station is on a difforent frequency in the range of $30-33.5 \mathrm{Mc} / \mathrm{s}$. and is identirica by a single recognition letter, thus, by tuning in to two stations in succossion ond knowing their location, a D/F fix is obtaincd by draving on a map the bearings printed on the tape. The stations are referred to by the code torra "Bcrnhard" and the aircraf't apparatus as "Bernhardine" or Funkgerat 120. A light weight vursion (FuG 120A) is also described in the report and it is this type that is uscd on jet aircraft. If desircd, transmission of a short mossagh of not more than 12 Ictters (or figures) can be made instead of transmitting the bearin s.
1.2. The report is bascd on the examination of two ground stations capturcd intact and on an cxamination of the aircraft ϵ quipment, in addition to a study of documents relating to the subject. Particular attention is given to the dctails.of the method of frequency separation between the two beans, the photoclcotric generation of the thluprintcr ohoractoristics, the control of rotation of the ground station, and the opcration of the aircraft printer, as these foaturcs are somewhat unusual.

2. PERTORMMCEE.

The range of the syster doponds on the height of the aircroft and is about 200 milcs at 6000 ft . The accuracy is from a $\frac{1}{2}$ to Idcg ., and automatic conntrol of the cirbornc rociver scnsitivity is provided. Thus, although the apparatus is not entircly fool-proof, it avoides the production of a major crror duc to mishondling and forms a sinple and rcliablc navigational aid which calls for littlc skill or attention to opurate and which can bo uscd by any number of aircraft simultan ously.

3. THE BERNH:HD GROUND STATIGN.

A gencral vicw of the station is givan at Fig. I with an cxplanatory diagran in Fig.2. The ovoroll dimnsions arc 106 ft . high x 132 ft . broad and the structurc is bascd on a strong girdor franowork supported at four points by clectric trollies running on a single circular rail, 65 ft . in diancter, on which the wholc structurc rotatos about its vartical axis in a clockyisc dircction (North, East, South and west) twice por minute. .
3.2. Referring to the diagran at Fig.2, it will bu scen that the cabin portion running across the facc of the rotating franc corrics two 5 KW trensizittors, cach of which transnits a scparate boan from a separate aeriol array. The upwr, throc-clenent arrey is f'cd from transmittor "B" and transmits the $\therefore z i$ unth writing bcan and rucognition lcttcr, while the lower array provides the markcr indication. Both transmissions are MCW, transmittor "il" being nodulated at 2600 , and" $\mathrm{B}^{\prime \prime} 1800$ cyclcs pcr second. The $A F{ }^{\circ}$ modulation of $1800 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Is applicd to transinittur "B" via the device producing the toleprinter charectcristics, the corricr wave boing continuous. Transnittor " A " is continuously rodulatod ond doperids for its function on the split boan pattorn producal by the aurial array. \therefore sketch of the shape of the beans (suphriaposed on on anothor) is givan at Fig.3, and Fig. 4 shows a graph of the ficld strongth plotted agoinst bcarine.
3.3. The teleprinter strip is shown at Fig. 5 and it will be seen that tho bearing is given by the position of the gap in the broad line above the Azimuth scale. This gap is obtained from the pattern of the indicating bean. Fig. 6 shows the nessage tape that may be transuitted instead of the izinuth scale. The teleprinter nethod used for the production of the azinuth scale and recognition letter is the German "Hellschrieber" systen in which each symbol is built up of separately printed vartical lines spaced about the width of a line ayart and all or part of each line is included, as'required, to define the character. This method of printing is used for both the azirmth scalc obtaincd from Transmitter "B" and the bearing indication froan Transunttur "s.s".
3. $\mathrm{H}_{\text {. }}$ The worinl power supply for the station is taken from the local $\therefore \mathrm{A}$ mains, even if an accurate $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. is not raintained, as an accurately controlled 50 cycle AC can be producal on the station. There is also a conplete stand-by power stition operated by Diesel engine. ipart from the power supply the upparatus is contained either in the rotating cabin or the control hut directly bencath it and details of each section of the structure are given in the following pararraphs.

4. CONTROL ROOM

This is show diagramatically in "fict 2 and c an be sub-diviled into four sections -
(a) Cortrol and test panel for power supplies
(b) Photo ceil pick-up and modulating or rangements.
(c) Modulation aplifier supplying transmitters.
(d) Special message desk for production of short messagis.

In addition slip-ring arran ${ }^{j}$ ennents arc included for f eeding the output of the control roon and the power supplies to the rotating cabin abov.
4.2. The control roon is a circular concrete hut standing on the ground in the centre of the track just clear of the rotating cabin. The modulation of transinitter "B" is produced by a photo electric nethod in which three photo electric cells are used, illuminated by three light rays passing through a large glass lise thet is carried round by a steel shaft, projecting into the centre or the control cabin from the rotating frone above. This glass disc is comin to all Bcrmhard stations is engraved with• 20 "tracks" in the form of concentric rings. The first track is for the production of the fazinuth writing scalc (Fiv.7). The next 18 tracks're for station recognition letters and a difierent onc of these is allotted to eech station. 'The trontioth track is usci for cheol-2ns the speci of rotition of the eftructure.
4.3. Figure 7 illustrates how the moulation'is offectud, the bearl of light to the photo electric cell scans the track and is interrupted by the Ifnes engraved thereon. The outnut of the cell therefore produces the choracteristics required. , similar effect is obtained mechanicully by the use of discs carrying cams to pruduce the special messages that may replace the aztruth scale. Each symbol has a separate disc and one revolution of the disc produces the letter. One such letter aisc is illustrated in Fig.8. 4. switchboond is provided in the control room in which plugs may be pushed into sockets that are commected to the contacts oporated by the cams on the letter disc (Figure 8). Thus in both cases the actua printing is produced by on-off operation. In one case of a P.E.cell of which the light source is interrupted, in the other by the mechanical openin , and ciosin, of a contact by cams. It should be noted that it is the "off" position (contacts open) which is the operating ptriod as the output of either system is taken to an mplifying circuit which includes a velve normally biussed beyond cut-off by the application of a voltage from the P.E. cell, or vis the contacts of the letter disc. This amplifier corries the A.F. modulation of $1800 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to transmitter "B". Hence the out oing
transmission is $\sqrt[A]{ } . F$. modulated in accordance with the spacing required to operate the printer in the aircraft. 4.4. The rotation frequancy is
supply mains with an output obtoined ained by comparison of the 50 cycle i.c. This trock is eneraved with 1500 even fromtrack No. 20 on the glass disc. speed of rotation a frequency of 50 enly spaced lines so that at the correct compared to the mains frequency by c.p.s. is produced, which is normally applied to a frequency meter or an means of two loudspeakers but nay also be

5. TRINSNITTERS

Two transmitters type KVC 15I/27 are provided (a) for the transmission of the direction indication and (b) for the azimuth writing (or special message) and recognition letter. One is shown in Fig. 9. In view of the by their \therefore.F. fransmitters are ruceived on one receiver, and then stparated is treated with areat frequency separation of $10 \mathrm{rc} / \mathrm{s}$. Thes from a comion unit which provides for the . 10. Kc / s apart consists of a separate rack which the transmitters are maintained which carries the initial rive of rack, set up between the translitters, tronsiaitter "B" is crystrl the conventional ne controlled at onc sixth of the outputequency in oscillator circuit thot, but the transmittcr" "d" is excited from a naster controlled from the swin crystal. There, ory transnitters are crystal device is illustreted in the block seen the arplifiers and fecds into a hepto-triode mixer vincre the bc it-frequency difforence is extracted nd fed into the frequency sujeration unit. Into this unit is also fed the output of a tuning fork oscillator working at the frequency of sepa ation, i.e. $10 / 6 \mathrm{Ac} / \mathrm{s}$. The beat frequency, representin, the iiffe ence of the two exciting stages, is aplified by a pentode valve and opplied in the form of an anode voltage (varying from aluost zern to a positive value) to condenser c.l. (Fig.II). The effect of this is to build up a cher, on C.3. as follows; the top condenser plate on C.I becones positively chargel and the botton plate charges up negatively due to a strean of electrons passing via $R I$ and parallel thereto via R2 and the diode valve VI. Tho catho le is then at a positive potential and C. 2. charces up to this voluc. When the top plate of C.l is not charged, valve VI is blocked, C.l lischares through RI and C. 2 comutnces to Jischerge through R2, but R2 is too large for the condenser to discharge ap, reciably before the next cycle, when C. 2 is chareed up again. Hence a pulsating D.C. voltage is produced across C. 2 which is smoothea and applied to condenser C.3.
A. similar circuit (notshomm) pioluces a voltage from the tuning fork supily in the sane nanner, which exears at C. 4 and which is therefore at a steady D.C. potential. The algebraic diffurence of the charges on the two condensers is now obtiined by applying first one and then the other condunscr to the control grid of a pentole valve, via C. 5 by means of a vibrator. The difference in voltace obtained ucross C. 3 and C. 4 is a dircct measure of the out of balance frequency. Thus if the frequency difference between the two exciting strages is $10 / 6 \mathrm{Kc} / \mathrm{s}$. no voltage is prilied to the grid of the pentode, as alternative contacts nade by the vibrator apply equal and opposite charces, and no moan voltafe results. If, however, the frequency of the inaster oscillator stafe is incorrect a voltace as appliod to the pentocie V2 which is amplified through V3 and used to control the grid of the Heptodo pert of the ECH4 master oscillator valve V4. The heptode is arranged as a reactance across the I.C. circuit of the naster oscillator which uses the triode portion of the sone ECH/ and this, according to the requirments of the moment, the reactance is varied to produce the required belence of fruquency. The specification roquires an accurcy of 1% and in prictice this nothod is found to work successfully. The
two transinitters are identical from the control stage onwards and fiye stages and the H．T．supplies are included．Fig． 11 shows one of the transinitters．

5．2．The $H F$ energy from the separate exciting stage is applied via HF cable to a transmitting pentode PF，／OE／40．in Section＂F＂（Fig．9）also tuned to the same frequency as the exoiting stage．From here the output goes to the next HF stage（ E ）where two similar pentodes act as frequency doublers for application to the next stage（C）two PB2／200 Pentodes in push－pull，where frequency tripling occurs to give the output frequency．HF stage（H）has twp PB3／800 pentodes in push－pull and it is in this stage that the audio－frequency modulation isaplied via a transfomer operating on the anode and screened grids of the PB3／800 pentodes．The transmitter output Section＂J＂has two air－cooled pentodes type PiKi2／30 in push－pr．－and delivers 4 KW 。 unmodulated carrier wave or，with a modulated signai，has a 15 Kv 。 overload rating．The valves in this section are air cooled by an electric compressor and ventilator（K）automatic regulation of the pressure and terperature being pr vided．

5＊3．The rectifiers for the various stages of the transmitter are included in the asserably（Fig．9）and are operated on a 380 volt supply．Referring to Fig．Il， Section＂d＂contains a 2000 volt and 1500 volt rectifier，Section＂B＂a 150 volt and $500-1000$ volt rectifier while Section＂H＂has a lo Kv．rectifier for the output valves that is provided with a quick make and break to provide instontineous disconnection in case of an overloud．

6．AFRI：I $\angle R R: Y S$

The upjer aerial systen consists of three full－wave vertical dipoles spaced $\frac{1}{2}$ wave length epart and nounted $\frac{1}{4}$ wave length from a reflector net． flll three are centre fed from a 2 wire feeder which runs across the centre of the system and comnects to a concentric tube H．F．supply and tuned Lecher İne．

6．2．The lower aerial array is more complex，and consists of eight full wave dipoles centre fed in two groups of four．Only the two inver dipoles in each group are provided with reflectors and the spacing of the elements is arranged to produce the field pattern shown in Fig． 3.

7．ROTATION．

The rotation of the instclletion is effected by four motors，each of which drives two wheuls resting on a singlc circular rail．Three of the motors are 220 v．D．C．type which provile the main motive power，while the fourth is a 380 v． 3 phase synchronous notor which is responsible for maintaining the speed of rotr．ticn at the required figure．ars c^{\prime} ivirg nes＇\because is ．is started and controlled from the centre of the transmitting room．The synchronous notor 1 s こ．at precisely 50 cyoles／sec；if the supply is not sufficiently accurate from the local mains，a special converter is provided which，operating on the 220 v ．supply，provicies the necessary 3－phase 50 cycle output and incorporates an elaborate stabilising arrangement．In addition，the frequency of this supply is measured in the control station by a frequency meter which registers simultaneously the frequency generated by the photo－electric recorder in the control room．An auxiliary drive consisting of four small reversible D．C．motors，considerably geared down to move the array very slowly， is available for testing and setting up the apparatus．These notors are uncoupled when the station is operating normally．

8．POWER SUPPLY

The station is intended for normal operation from outside A．C．mains providing 380 volts at an accurately stabilised 50 cycles／sec．，but is also able to operate in areas where the moins supply is unreliable．Where this is so，the feed to the 220 v ．D．Comotors and the 50 cycle supply to the synchronous motor are both controlled from a spring contact governor，operating on the shaft of the 220 v ．D．C． 380 v. A．C．convertor，which serves to increase or decrcase the
resistance of the power linc to the D.C. notors, or (for major variations) to operate ε rheostat on the 220 v . D.C. supply. This rhoostat is nomally fluctuations. in a motiven fron the supply and operates to nullify any of a $200 \mathrm{~h} . \mathrm{p}$. diesel urine stand gunerating set is provicled which consists output. This power supply is accuretes a 3 -phase 380 v . generator with a $160 \mathrm{KV} /$. for these supplies is in is accuratcly controlled at 50 cycles. The switchboard switches.

9. CONTROL RLCEIVING ST, TION UD 'TEST PIIEL

A monitoring station is previded in which a simple receiver is mounted about 1800 .as. ($\frac{1}{2}$ mile) fron the trinsinter on a known bearing. The A.F. output from this rucciver is fed by means of a 5 puir tolephone cable to the control room (and the nucussary H.T. nll L.T. supply to the receiver is also carried by this coble). The recuiver consists of t io 'e circuit vith a singlestc.ge of L.F. amplificution and sorves to provicio nonitoring of the signals transmittca. The output mey be comuctua alternatively to Fug 120 instruments, as used in the aircraft, or to a current ricorder for showing the raiation. pattern of the beais at the receivine station: Within the control room, therufore, during noral operation, the FuG 120 apuratus will print a succession of bearings every 30 seconis, showin the lirection to the monitoring stetion, and the recognition lettor of the transmitter, which serves to establish that the station is functioning correctly. ilternctively, the current rucorder may be switched in, instcod of the Fug 120 and the bean pattern (Fig.3) urawn as a further check on the output.of the station. Nll supplies and modulation frequencies con be tested on on oscillograph, mounted in the transaitting station, which is perinanently wired to a multiple selector switch comected to the appropriate circuits, it is here thit the speed of rctation ani mains supply frequency may be checkel altuinatively to the loud-speaker or frequency meter comprisons.

10. FUG 120 (BERINH_RDIIE)

There are two models of airborne equipnent used for the reception and printing of the Burnherd buan, FuG 120 (the original type) and a later model, FuG I20a, in which a different fype of printing unit is usea and in which sone extra units are incorporated (Fig.12). The installation consists of actachable units plugging in to :ountine franes to which the fixed inter-unit wiring is perizanently attached. In both FuG 120 cnl 120a, the receiver used for the reception of the Bernhard sienals is employed alternatively to its normi function of receiving the rein buacon Ior Lorenz blind approach apparatus. The block dicigran (Fig. 12) shows the layout of the cp, rratus and of the comnection of this receiver to the blind approsch equipment or the FuG 120, and a list of the units comprising FuG 120 and FuG 120a appears at ippendix A. The two instruants are illustrated to; other in Fieg. 13 on a test panel, which is designed to test either installetion, and again (with covers rernoved) in Fig. 14. On the aircraft the units are not crrenged tofether in this compact manner; the printer unit is the only one ar ailable to the opurator and is installed in the cockpit. It also carries the controls required by the renainder of the units, which ore placed in any convenient lonation in the fuselage.
10.2. Referring to Fig.I2, to bricfly outline the operation of the systen, the signols are received on the EBB .3 receiver where they are arplifiod and detected and passed to the junction box ZL 48 , from whence they pass to the service switch UG 12.0. If this switch is set to "FuG 120", they pass to the connection box VD 120 for connuction to the anplificr SV 120, in which they are first orplified by one valve (on which the volumc control operates) before being passod. to the filter unit SG 120, where the two audio frequency notes of 2600 and 1800 are discrininator and returned separately to the SV 120 for separate mplification. Two separate 2 -valve LF cmplifiers are provided for this purpose fron which, in each case a signol is obtcined that is applied to a double diode valve operating the printer mechanishas in the printer unit HS 120, or PSch 1200, one for the aziruth scale (or sixcial iutssage) and the other for the beoring intication.
10.3. The H.T. supply for aill the FuG l20 units comes from the motor genurator U 120, but the ruceiver EBI. 3 nomacily operates on the $H . T$. supply for the blind-aproach system from the motor-gencrator U8, which forms part of the blind aprouch system FUBI.2.

11. R.F. RECEIVER EBL. 3.-H or F.

The receiver ap:uous in two foms, with manual tuning (EBI3.H) or with remote control of the 4 ganf condenser in 34 positions over the frequency range of 30.0 to $33.3 \mathrm{Mc} / \mathrm{s}$. The receiver uses seven RV12P2000 miniature GP valves (nominally R.F. puntcles) as R.F., Osc., mixer, 3 x IF, and letd The total bani width at 6 db .0 m is $45 \mathrm{Kc} / \mathrm{s}$. which is only allequate to receive both beans simultaneously if the set has been carefully tuned to the correct frequency, due to the fact the the over-all band width of the two beams is about $15 \mathrm{Kc} / \mathrm{s}$. ($10 \mathrm{Ko} / \mathrm{s}$. scparation of carrier wave plus 2.6 and 1.8 F and $4 \mathrm{inc} / \mathrm{s}$. keying spectrun).
11.2. The receiver is fed from a one metre rod aerial via a matching unit and it's sensitivitir is sbout 1 mw for 6 mv signel voltage.

12. SEIECTOR SWITCH UG 120

The output frori the EBI. 3 goes via the couplin, connection to the chanceover switch UG 120, which is relay operated from a 2-way lever in the cockpit and scrves to ap,ly the output of the EBI. 3 to either the SV 120 teleprinter or GBI. 2 blind $Q u$ roach arplifier, and to connect the EBI. 3 to the autometic gain control of the set in operation.

13. TELEPRIIVTER - $\because P L I F I E R$ SV 120

The Ahplifier SV 120 is shown in figures 13, 14 and 19 and the wiring diagrem is show in Fi . 17. It consists of 3 separate anplifiers in one case, comprising
(a) One $v=l v e(V I)$ for encral wiplification and manual volume control cad the cumbined $/ \mathbb{F}$ signal is received prior to the separation in the filter unit of the two audio frequencies. The volume control for this valve is situated in the printer unit in the cockpit and serves to establish the eeneral overall amplification as required by the dis ince of the aircraft fron the Bernhard station.
(b) The armlifier for the inuicator signal consisting̈ of V2 and V3 for TF amplification, followed by three valves (V4, 5 and 6) for applying the signal to the teleprinter unit and for \therefore iVC.
(c) The amplificr for the azimuth scale, similar to (b) above (valves V7 - VI2.).
13.2. The indicator sicilel from the filter unit $S G 120$ applied to (b) above, is an in of $1800 \mathrm{c} / \mathrm{s}$, varying in axplitude in step with the incoming field stren th (Fig.7). It is duplified in V2 and V3 and applied to the double output transformer U_{4} for appli ation to the rectifiers V4 and V6 for separate treatement. The rucordin; mochanism transoribes the signal in the form of up strokes, the leneth of which are directly related to the amplitucie of the signil. This is effected by the condenser ($C 6$ Fig.17) huvine been charged at the comiencement of each stroke by a can contact operated in the printer unit. C6 then ischarges slowly through the choke, D2, and a saw-tooth voltage is obtaincd. This is pplied to the grid of V5, together with the indicator signal fron V4 and a large bias voltage. The bias is so adjusted in relation to the $\alpha G C$ that the saw-tooth voltage is insufficient to causse anode current in V5 in the cbsence of an incicator sienol. When, on receipt of the signal, V4 produces a D voltoje, that overcones the bias, the saw-tooth voltcge causcs anode cur ent to flow, the duration of which depencis on the
mannitude of the DC volta. the indicator bean pass the mi rull lung lines are dram if the wo lobe of effective signal. The GC (hich oprequrricient ficla strungth to produce of by the sicnal receiver produce this of cat on the R.F. rec.ivor) is hold at (Fig.3) hich, althou frar the stio lobes and boindicator boan :i,nals maintain the "GC ot weakcr thon th. main becea bean of trananitter "L." indicator sicn at such coluvul that the printer, nevertheles: surve to provided on the orinten wivel within the linits of con ences to wite whan the by reame uf a relay R2 unit whioh oliminates the op ration press stud is also receotion of sicmels the whis tho receiver on full ration of the AGC valve (ximun r"nge.
 goes to the multiplu output tr m mplificrs $V 7$ and V8, from whena the output to velves 9, 11 inc 13. Msformur U7, which supplies three superote outputs
13.4. Vilveio. 9 controls the printur V Ivu (No.10), the nodo current of which pesces throuch the solenoid opuratina the printer mernet (Fi, 15). The bias voltafe is tiken from W. 39/N. 40 and the rectified signcl voltacu is impressed on C.26/T.25. The time constont rectiriod signcl volt is tc eneble the printer to follow the sien l pulses of 26 be smell (l miliisec.) durstion which represents osingle inure square (Fig.7). 2 millisecs minitum 23.5. The output from reley. RO.II, pli when c. cert"in voltice v'Ius hos olt "c for unblockin the start-stop v'lve No. 12 negrotive bias for RO.12 is at W. 4 No coross C. $15 / \mathrm{T} .47$. The tion not oprate durin the short obtrined is 1.5 stconis.
13.6. RO. 13 provides suton the ain control for the eunwal cainuth seale Minlifyine valve RO.7, so the the voltat hendued by valvos 9, Il and 13 is maint incd at a ruasonobly constont value. Here the bias voltare is taken fron. W. $46 / 47$ and the time anstant is ver Iarge (about 25 seconds) in ordur that urins the puriou between succeseive rucuptions of the bean signel there will be no material vari ions in arelificr cain. C. 1.8 is theref. re ar a condenser of 20 THD .

14. THE PRINTER UNLLS HS 120 nd P SUCH 120a

These are illustrated in Fis. 13 and 14 and 20, 21, and 22. They điffer considerubly in detuil but very litile in principle. The operation of the printer is illustrated in Fi. . ${ }^{6}$. Thu muthod used is for the paper to be dram slowly at short intervels wst the rapidly rotatin" printin drums and is pressea aceinst the printin wums by the printin; megnet accordin, to the signcls rectived.
14.2. The actuel operation eif the priater unit HSL20:ie on claborate one and incluces a synchronisin: device for insuring the correct specin; of the lincs and two printin; Jruas, an upper and - lowes one for printing the indicator mark, and the azirruth scale, respuctively. The lower drun carries three raised elical lines, and wites three lines por decree of the azimuth scale ($\mathrm{F} \mathrm{i}_{1} \cdot 7$). The upper printine drum wites 6 lines per de ree end carries 6 helical projections accordin ly. Synchronisin, takes place on the azinuth scale and is done by a synchronising: majret coupled in series with the writin: marnet (Fir.l0). Synchronisation is effectud as follows. The printin dmun is not fastened to its spinile but is connctua thereto by a slidin couplin, The drivin; motor is centrifurally yoverned to opurate about $1 \frac{1}{2} \gamma_{0}$ facter then necessary Thus at evory le ree stroku - puse myst be obscrved caiv. lunt to bout 480 of the time taken for 1^{0} (One tricleth of a sccond), hich is ecqal to about $1 \frac{1}{2}$ "squares" on the diaram Fi. 7 . This pause is obtainel by isetchut which ene des with what is tomed the
15.3. The PSch 20 , except that instead of the paper rumnin past a vinuor between 2 arums, it feeds out of PSch 120u as on a tape machine and is letrched to be reaw. On the HS120 the amer is provided to arljust the intensity of the licht requirca.
15.4. The inlicator printin: drum on PSch 120 e has only four lines compared with the six on that of the H.Sl20, and the sav-tooth lechanisn accorlinily carries only 4 cms instan of 6. In adition, the on-off mechanism of the 1200 printer is chanically oprated ind this oparation can be effccted by opuratins the press stud (for maximum an in order that the motor may be made to run when required to reul out poper to real the last of a series of markin s.

IG. R_I.GE

The rane of the apparatus depenus on the heicht of the aircraft and the rollowin; table indicates the rones obtained at various heints:-

Hei ht of a/c above the round in it.
300
1500
3000
6500
16000
25000

```
Rance in miles
```

```
                                90
```

 90
 1 1 0
 1 1 0
 I30
 I30
 185
 185
 2 5 0
 2 5 0
 310
 310
 G.W. Colvert
 G.W. Colvert
 S/Ldr.
 S/Ldr.
 for Wine Comanuler.
 for Wine Comanuler.
 1 1 0
    ```
                                1 1 0
```

I.I. $2(\mathrm{i})$
D. of I.
20.2.46.

DIS'MRIMIIUN:-

M. .P.

$$
\begin{aligned}
& \text { D. C.D. } \\
& \text { h....E. } \\
& \text { For Int.Sict. J. } \\
& \text { i..... L. } \\
& \text { Rifopt. } \\
& \text { S.I.G.E.S.O. } \\
& \text { P.S.G. Suc. }
\end{aligned}
$$

 6 H.I. A..'T.
(Air Pranch) 4
a.C. of S.A2
U.S.A.F.E.lain I
A. Q.12th T. i. Cim.
\therefore. P.O. 696 U.S. I

Doimilais

| $\frac{\text { NDITIOHIL }}{\text { B.I.C.S. }}$ | |
| :---: | :---: |
| C.R.B. | 15 |
| lictricrlanis | |
| ir Force | |
| Dutch Wission, | |
| Sir ..ttache, Paris | |
| dir i.ttache, | |
| Belzium | |

CCMPONHM'S O.' Fuls 120 and pug 120 a

FIG I. BERNHARD STATION W" ATHUNDBORG.

FIG.2. DIAGRAM OF BERNHARD STATION

FIC 3. SKETCH OF RADIATION PATTERNS.

FIC 3. SKETCH OF RADIATION PATTERNS.

FlG. 4

FIC.7. SECTION OF CLASS DISC SHOWING HOW THE ENGRAUINGIS DERIVED.

FIG 8. LETTER DISC FOR LETTER "R".

FIG9. 5 kW. TRANSMITTER.

FIG.10.

[^0]Items incluafa in fue 120 and $120 a$
ILTERNATIVE I2O OR IROA /TEMS

Fia 12. Schematic diagram of fubi 2 connected to FUG. 120 OR FUG. $120 a$

EIG. 13. TESTING PANEL FOR FUG. 120. \& 120a.

FIG. 13. TESTING PANES FOR FUG. 120. \& 120a.

PIG. 14. TESTING PANEL (COVERS RESOVND).

Pig.16. SKBTCH OM RRINTING DEVICE FOR AZINUTH SCALE.

言

FIG. 21 PSCh120a. PRINTER UNIT, COVER OPEN.

FIG22. PSch120a. PRINTER UN VIEW FROM UNDERTEATH, COVER REMOVED.

FIG22. PSch120a. PRINTER UN VIEW FROM UNDERTEATH, COVER REMUVED.

[^0]: FIG I. FREQUENCY. CONTROL CIRCUIT.

